Stabilization of Triorganotin Cations — Competition between Intramolecular Coordinative O—, S— or N—Sn Bonds and Side-on π Coordination to C=C Bonds

Bernd Wrackmeyer*a, Sabine Kundlera, Wolfgang Miliusa, and Roland Boeseb

Laboratorium für Anorganische Chemie der Universität Bayreuth^a, D-95440 Bayreuth

Institut für Anorganische Chemie der Universität-GH Essen^b, Universitätsstraße 1-4, D-45141 Essen

Received August 13, 1993

Key Words: Tin cations, triorgano / Coordination, σ and π / 1,1-Organoboration / 1-Alkynyltin compounds, functionally substituted

Di-1-alkynyltin compounds 1 of the type $Me_2Sn(C\equiv C_{\cup}L)_2$ $[L_{\cup}=2\text{-pyridyl}\ (a),\ Me_2NCH_2\ (b),\ MeOCH_2\ (c),\ MeOCH=CH\ (d),\ EtSCH_2\ (e)]$ were prepared and the 1,1-organoboration of 1 with triethyl- (2a) and triisopropylborane (2b) has been studied. The first detectable intermediates were in all cases zwitterionic compounds 3 (from Et_3B) and 4 (from iPr_3B) with a cationic triorganotin fragment, stabilized by coordinative σ L-Sn bonds and by side-on coordination to the $C\equiv C$ bond of an alkynylborate moiety. The nature of this stabilization has been established by three X-ray analyses $(3b,\ 4b,\ and\ 4d)$ in the solid state and by multinuclear NMR (1H -, ^{11}B -, ^{13}C -, ^{15}N -, $^{119}Sn\ NMR$) in solution. The comparison of the molecular structure of 3b, 4b, and 4d with that of intermedi-

ates without functional groups shows that the distance of the tin atom to the $C \equiv C$ bond is elongated. However, the planar arrangement of all relevant atoms proves that the side-on coordination of the tin atom to the $C \equiv C$ bond is still present. These intermediates 3 and 4 rearrange to stannoles 5, 6 and/or to 1-stanna-4-bora-2,5-cyclohexadienes 9, 10. In the case of 3b and 3e, ¹¹⁹Sn NMR indicates that dialkenyltin compounds 7b and 7e are also formed as minor products. In the case of 3e, the 3-stannolene 8e is one of the final products. In the stannoles 5 and 6 a coordinative L-B bond is evident, and there is NMR spectroscopic evidence of a weak coordinative L-Sn bond.

Free trioganoelement cations of silicon, germanium, tin, and lead, [R₃M]⁺, have been in the centre of a controversial debate for a long time^[1]. However, there are many examples of stabilization of such species by more or less strong donor-acceptor interactions [R₃M-L] where the donor L in general offers a lone pair of electrons for M-L σ interactions^[2]. In order to explain the course of 1,1-organoboration reactions of alkynylmetal compounds^[3] we have proposed that the cleavage of the M-C≡ bond leads to zwitterionic intermediates of the type A. The triorganoelement cation in A is stabilized by side-on coordination to the C≡C bond of the alkynylborate group. In principle, this can also be understood as hyperconjugative [4] β -metal-stabilization of a vinyl cation $(\mathbf{B_1})^{[5\mathbf{a}-\mathbf{c}]}$, as a bridged structure $(\mathbf{B_2})$, or even more general as σ - π delocalization^[5d]. Recently, we have shown that such intermediates can be isolated and fully characterized when di-1-alkynyltin-[6], -lead-[7], or tetra-1-alkynyltin compounds[8,9] are treated with triethylor triisopropylborane (see X-ray analyses of compounds of the type $C^{[6]}$, $D^{[7]}$, and $E^{[8]}$). These species are very reactive and tend to rearrange, in some cases already at -20° C, into various cyclic compounds such as stannoles (F) or plumboles^[10], 3-plumbolenes^[11], or 3-stannolenes G (in the presence of excess of R₂B). 1-plumba-[17] or 1-stanna-4-bora-2,5-cyclohexadienes^[6] (H), or into various spirocompounds $^{[9,12,13]}$ (starting from the intermediate E).

In this work, we report on the attempts to prepare intermediates of type I ($R^1 = L_{\cup}$) which are stabilized by π coordination and/or intramolecular O-, S-, and N-Sn coordination (functional substituent in L). Starting point is

the synthesis of the functionally substituted di-1-all

the synthesis of the functionally substituted di-1-alkynyltin compounds 1 according to eq. (1).

$$Me_2SnCl_2 + 2 \text{ Li-C} = C - L \xrightarrow{-2 \text{ LiCl}} Me_2Sn(C = C - L)_2$$
 (1)

	a	b	С	d	e
لی		Me ₂ NCH ₂	MeOCH ₂	MeO	EtSCH₂

The 1,1-organoboration of 1 with Et₃B or *i*Pr₃B (2a,b) should afford the intermediates 3 (from Et₃B) or 4 (from *i*Pr₃B). Furthermore, it was of interest to find out whether the final products of the 1,1-organoboration reactions correspond to those found for di-1-alkynyltin compounds without functional groups in R¹ [6] (Scheme 1). Multinuclear NMR (¹H-, ¹¹B-, ¹³C-, and ¹¹⁹Sn NMR) in solution served for monitoring the progress of the reactions and to identify the final products. In three cases X-ray analyses were carried out in order to determine the molecular structure of the intermediates 3b, 4b and 4d.

Scheme 1. 1,1-Organoboration of functionally substituted di-1-alkynyldimethyltin compounds 1a-e

Me Me
$$R_2^2B$$
 Sn BR_2^2 (f) Me_2Sn BR_2^2 $R^2 = Et$ R^2

Results and Discussion

The synthesis of the di-1-alkynyltin compounds **1** is straightforward, according to eq. (1) (see Table 1 for ¹³C-and ¹¹⁹Sn-NMR data).

Table 1. 13 C, 119 Sn-, and 15 N-NMR data of dialkynyltin compounds ${\bf 1a-e}^{[a,b]}$

L	2-Py	CH ₂ NMe ₂	CH₂OMe	CH=CHOMe	CH₂SEt
	1a ^[c]	1b ^[d]	1c	1d ^[e]	1e ^[f]
Me₂ Sn	-6.5	-6.3	-7.1	-6.5	-6.6
	[500.3]	[499.2]	[501.4]	[498.6]	[499.7]
Sn-C≡	90.6	84.9	86.1	93.0	82.4
	[573.3]	[612.9]	[592.9]	[619.1]	[609.3]
L _C≡	107.5	105.1	105.0	103.3	105.2
	[117.2]	[123.4]	[119.4]	[133.0]	[124.8]
L	142.3 (2) [15.8] 122.5 (3)	48.9 [11.4] 44.0	59.6 [11.4] 56.6	84.7 [16.3]	19.4 [12.5] 24.8
	122.5 (3)	44.0	36.6	130.6	24.0
δ ¹¹⁹ Sn	-145.5	-156.8	-152.5	-151.5	-153.5
δ ¹⁵ N	-63.5	-358.9			

[a] Ca. 20–40% in CDCl₃ at 26±1°C. – [b] nJ (119Sn, 13C) in Hz are given in []. – [c] Other δ^{13} C values: 135.6 (C-4), 126.7 (C-5), 149.4 (C-6). – [d] 13 C-INADEQUATE: 1J (\equiv^{13} C13CH₂) = 62.5, 1J (13C \equiv^{13} C) = 124.1 Hz. – [c] Other δ^{13} C values: 60.1 (OCH₃). – [f] Other δ^{13} C values: 13.7 (CH₃).

In order to determine the proper reaction conditions for the formation and isolation of intermediates at a larger scale, all reactions between the di-1-alkynyltin compounds 1 and the trialkylboranes 2 were at first carried out in NMR tubes, using a 1:1 ratio of 1 and 2 and also a five- to tenfold excess of the trialkylborane 2. The components were mixed in an inert solvent such as chloroform, dichloromethane, or toluene between -60 and -78° C, and two samples were made of each mixture. One sample was allowed to reach ambient temperature and the second sample with the same composition was slowly warmed until 119 Sn NMR (see Figure 1) showed that the reaction had started.

Keeping the reaction mixture at that temperature, the first detectable intermediates are 3 and 4. A stereoselective intermolecular 1,1-organoboration of one of the two 1-al-kynyl groups in 1 has taken place, and the second 1-alkynyl group has already migrated from the tin to the boron atom. In the case of 4, these compounds were isolated as air- and moisture-sensitive, colorless solids. The compounds 3 are much less stable and rearrange further at room temperature. However, it proved possible to get crystalline material suitable for an X-ray analysis of 3b and also of the compounds 4b and 4d (vide infra). The characterization of all other compounds 3 and 4 is based on the consistent ¹H-, ¹¹B-, ¹³C-, and ¹¹⁹Sn-NMR data set (see Experimental and Tables 2, 3).

Figure 1. 33.3 MHz ¹¹⁹Sn-NMR spectra of the reaction solution in CDCl₃ containing the di-1-alkynyltin compound 1d and Et₃B.

(a) ¹H Inverse-gated decoupled ¹¹⁹Sn-NMR spectrum, measured at —65°C immediately after mixing of the starting compounds.

(b) ¹¹⁹Sn-NMR spectrum (refocused INEPT with ¹H decoupling) measured after three days at room temperature. The appearence of the ¹¹⁹Sn-NMR signal for 3d' shows that the SnMe/BEt exchange takes place in the zwitterionic intermediate

With the exception of 3c.e and 4c.e, the derivatives 3 and 4 appear to be more stable than their counterparts of type $C^{[6]}$. The final products (5, 6, 8, 9, 10) of the twofold 1,1organoboration are very similar to those found previously without functional substituents in R¹ [6]. Clearly, the formation of 7e and, finally, 8e requires the equilibrium (b) in Scheme 1 where 3', with the 1-alkynyl group linked to the tin atom, must be available for the intermolecular reaction with Et₃B. The donor stabilization does not prevent the electrophilic attack of the stannyl group at the C≡C bond of the alkynylborate moiety [Scheme 1 (c, d)], and, depending on the substituents R^2 and L_{ij} , either the stannoles 5, the 1-stanna-4-bora-2,5-cyclohexadienes 9, or mixtures of both are formed (see Experimental). One major difference to previous work on organoboration of di-1-alkynyltin compounds^[6] concerns the exchange of alkyl groups between tin and boron, e.g. in 3d (not in 4!) as shown in Figure 1. It appears that a donor L_{\cup} is necessary [eq. (2)] since a similar behaviour has been observed previously in the 1,1organoboration of functionally substituted monoalkynyltin compounds[14,15].

We regard this as a chemical indication of a weakened π coordination to the tin atom in 3 because the BEt/SnMe exchange requires alkyl groups to move into the bridging position, at least for a very short time. Unfortunately, this exchange is a complicating factor for isolating pure compounds. Therefore, depending on the reaction time required for the rearrangement of 3 to 5 or 9, pure compounds 5 or mixtures of 5 and 9 may also contain some isomers resulting from the BEt/SnMe exchange reaction. All products 5 to 10 are identified on the basis of their characteristic NMR data (see Experimental and Tables 4, 5).

NMR Spectra

Di-1-alkynyltin Compounds (1): Chemical shifts δ^{13} C and δ^{119} Sn as well as coupling constants $J(^{119}\text{Sn}^{13}\text{C})$ (Table 1) for the di-1-alkynyltin compounds 1 are similar to those of comparable derivatives without functional substituents^[16].

Table 2. 13 C-, 119 Sn-, 11 B-, and 15 N-NMR data of (η^2 -alkyne)tin compounds $3\mathbf{a} - \mathbf{e}^{[a,b]}$

	Ţ				
L	2-Py 3a ^[c]	CH₂NMe₂ 3b	CH ₂ OMe 3c ^[f]	Sd [g]	CH₂SEt 3e ^[h]
Temp.(K)	258	243	243	243	243
Me₂ Sn	1.3 [362.9]	-0.2 [308.4]	1.3 [304.1]	-0.8 [358.6]	1.1 [304.1]
SnC=	139.9 [864.9]	138.2 [877.9]	136.0 [779.8]	126.9 [745.5]	141.0 [819.6]
BC=	194.0 [br]	177.9 [br]	177.4 [br]	185.0 [br]	183.0 [br]
BC≡ B-C≡C	125.7 [br] 107.1 [38.7]	127.2 [br] 97.9 [49.6]	125.0 [br] 103.5 [54.5]	115.9 [br] 111.2 [27.8]	116.3 [br] 106.3 [44.7]
BEt ₂	17.1 [br] 12.6	16.2 [br] 12.4	16.5 [br] 12.2	17.8 [br] 12.2	16.7 (br) 12.2
Et-C=	26.4 [145.0] 12.9 [17.4]	25.6 [169.5] 13.9 [20.2]	26.4 [153.7] 13.2 [19.1]	25.0 [134.1] 14.9 [16.9]	25.1 [135.1] 14.0 [18.5]
L_C=	159.0 [86.1] 121.0 [74.0]	62.9 [83.4] 46.0	75.3 [58.3] 58.1	110.8 [114.4] 140.3 [21.8]	33.6 [122.1] 25.1
L _C≡	142.4 122.5	49.6 43.2	60.0 56.9	81.8 162.5	18.9 24.4
δ ¹¹⁹ Sn	114.1	127.7	207.1	105.1	169.0
δ ¹¹ Β	-8.7	-10.2	-8.7	-7.1	-4.6
δ ¹⁵ N L _ C = L _ C =	-101.4 ^[d] -64.9	-334.4 ^[e] -357.6			

^[a] Ca. 20% in CDCl₃. - ^[b] $^{n}J(^{119}Sn, ^{13}C)$ in Hz are given in []; [br] denotes broad ^{13}C resonances of boron-bound carbon atoms; [n.o.] = not observed; $\delta^{11}B$ values±0.3. - ^[c] Other $\delta^{13}C$ values: 139.1 [14.7], 145.3 [10.4], 119.4 ($\mathbf{L}_{\cup}C=$), 136.0, 128.4, 149.5 ($\mathbf{L}_{\cup}C=$). - ^[d] $\delta^{15}N$ at 238 K. - ^[e] $\delta^{15}N$ at 298 K. - ^[f] $\delta^{13}C$ values in C_7D_8 at 243 K: 1.3 [306.3] ($\mathbf{Me_2Sn}$), 136.4 [779.4] ($\mathbf{SnC}=$), 178.1 [br] ($\mathbf{BC}=$), 125.5 [br] ($\mathbf{BC}=$), 104.7 [55.6] ($\mathbf{B}-C=C$), 17.3 [br], 12.7 ($\mathbf{BEt_2}$), 26.9 [154.8], 13.6 [17.4] ($\mathbf{EtC}=$), 75.8 [61.0], 57.1 ($\mathbf{L}_{\cup}C=$), 60.0, 56.9 ($\mathbf{L}_{\cup}C=$). - ^[s] Other $\delta^{13}C$ values: 59.0, 61.0 ($\mathbf{OCH_3}$). - ^[h] Other $\delta^{13}C$ values: 13.5, 13.8 ($\mathbf{SCH_2CH_3}$).

Using the phenyl derivative for comparison with 1a and the ethyl derivative^[6] for comparison with 1b, 1c, and 1e, it turns out that the magnitude of the coupling constants $|{}^{1}J({}^{119}\mathrm{Sn}{}^{13}\mathrm{C} \equiv)|$ is smaller in the functionally substituted compounds 1, whereas there is a slight increase in the magnitude of $|{}^{1}J({}^{119}\mathrm{Sn}{}^{13}\mathrm{C}_{Me})|$ in 1 (see Table 6).

 $(\eta^2$ -Alkyne)tin Compounds (3, 4): The formation of the zwitterionic compounds 3 and 4 in the respective reaction solutions is evident from the $\delta^{11}B$ values in a typical range^[17] for tetracoordinate boron atoms and from the deshielding of the ¹¹⁹Sn nuclei by >200 ppm as compared to

Table 3. ¹³C, ¹¹⁹Sn, ¹¹B-, and ¹⁵N-NMR data of (η^2 -alkyne)tin compounds $4\mathbf{a} - \mathbf{e}^{[a,b]}$

L	2-Py 4a ^[c]	CH₂NMe₂ 4b	CH₂OMe 4c	CH=CHOMe	CH₂SEt 4e ^[e]
Me ₂ Sn	0.8	-0.7	0.8	-0.9	0.8
	[372.8]	[305.2]	[307.9]	[355.9]	[304.1]
Sn-C=	141.4	138.7	136.1	127.6	142.5
	[8 9 4.2]	[889.9]	[808.7]	[754.2]	[840.3]
B-C=	198.9	182.4	181.1	189.2	186.6
	[br]	[br]	[br]	[br]	[br]
B C ≊	122.7	122.6	121.7	114.5	112.9
	[br]	[br]	[br]	[br]	[br]
BC≡ C	110.0	103.2	107.2	114.5	110.3
	[37.4]	[52.3]	[50.1]	[23.4]	[41.4]
BiPr ₂	21.1 [br] 22.5	19.9 [br] 21.8 22.2	19.8 [br] 21.6 21.9	21.2 [br] 22.0	20.0 [br] 21.7
iPr-C=	32.9	32.4	32.6	32.9	32.5
	[141.7]	[177.1]	[161.3]	[147.1]	[155.9]
	20.3	21.4	20.9	22.5	21.6
	[n.o.]	[17.4]	[16.8]	[13.5]	[15.3]
L _C=	158.4 [80.7] 123.2	64.9 [80.7] 45.9	76.1 [52.9] 57.8	113.4 [109.5] 139.1 [28.3]	37.0 [116.6] 25.9
L _C≡	142.7	49,9	60.0	82.7	25.2
	122.4	43.8	57.1	162.3	20.1
δ ¹¹⁹ Sn	70.9	108.7	175.3	78.3	137.4
δ ¹¹ Β	-3.1	-4.6	-3.6	0.5	-1.5
δ ¹⁵ NLC= LC=	-99.0 -69.3	-331.0 -357.6			

[a] Ca. 20% in CDCl₃ at 298±1K. - [b] n J(119Sn, 13C) in Hz are given in []; [br] denotes broad 13 C resonances of boron-bound carbon atoms; [n.o.] = not observed; δ^{11} B values±0.3. - [e] Other δ^{13} C values: 138.4 [16.3], 119.0, 144.5 [10.9] (L $_{\cup}$ C=), 135.9, 128.2, 149.5 (L $_{\cup}$ C=). - [d] Other δ^{13} C values: 59.0, 60.9 (OCH₃). - [e] Other δ^{13} C values: 13.7, 13.9 (SCH₂CH₃).

the di-1-alkynyltin compounds 1. The 13 C-NMR spectra of 3 and 4 are also fully in accord with the proposed structures (Figure 2) and reveal several indications of a coordinative N-, O-, or S-Sn bond in solution. The magnitude of all coupling constants $^{1}J(^{119}\text{Sn}^{13}\text{C})$ is greater than in compounds of type C [C: $^{1}J(^{119}\text{Sn}^{13}\text{C}=)$ = 625.6; $^{1}J(^{119}\text{Sn}^{13}\text{C}_{\text{Me}})$ = 240.8 Hz]. This is the typical behaviour if the coordination number of tin is increased^[18]. The trend

Table 4. ¹³C-, ¹¹⁹Sn-, and ¹¹B-NMR data of stannoles 5 and 6^[a,b]

LU	2-Py 5a ^[c,d]	2-Py 6a [e]	CH₂NMe₂		CH ₂ OMe 5c[f]	-			CH₂SE
	201c,03	₽₫ re1	5b	6b	2c111	6с	5d [g]	5d'	5e ^[ի]
Me₂Sn	-7.4 [364.5]	-6.7 [371.5]	-8.8 [323.8]	-8.5 [322.9]	-8.5 [334.0]	-8.1 [335.2]	-8.5, [380.0]	~9.8 (365.6)	-8.5 [323.7]
C- 2	141.6 [335.7]	138.7 [n.o.]	133.5 [388.3]	135.9 [363.3]	133,0 [388.3]	134.2 [368.4]	134.1 [415.4]	134.0 [391.8]	136.3 [n.o.]
C- 3	207.6 [br]	208.9 (br]	179.2 [br]	178.1 [br]	172.2 [br]	172.5 [br]	166.0 [br]	164.1 [br]	175.1 [br]
C- 4	158.4 [70.4]	160.6 [63.0]	154.7 [83.1]	157.7 [78.8]	[35.0] 151.6 [78.0]	154.2 [73.6]	151.2 [108.3]	151.7 [100.4]	156.2 [86.1]
C- 5	150.8 [578.7]	148.1 [n.o.]	142.1 [528.2]	144.8 [540.0]	141.3 [527.3]	142.0 [530.8]	129.7 [456.8]	129.6 [435.1]	142.9 [526.4]
BEt ₂ , BiPr ₂	17.7 [br]	[e]	12.5 [br]	18.4 [br]	14.9 [br]	18.8 [br]	(g)	[g]	22.6 [br]
	10.3	19.5 20.5	10.5	20.3	10.5	20.4 20.6	9.2	10.8	10.2
Et, iPr	26.0 [57.5]	33.8 [47.3]	24.3 [58.9]	31.0 [65.5]	25.2 [59.3]	33.6 [63.8]	26.4 [47.2]	26.3 [45.3]	
	13.6 [11.1]	22,8 [n.o.]	14.6 [10.9]	22.2 [9.8]	14.2 [11.3]	21.4 [8.7]	14.6 [n.o.]	14.8 [n.o.]	
L_C²	163.1 [95.1]	161,8 [112.2]	73.4 [105.6]	74.7 [100.4]	87.0 [123.2]	86.8 [119.9]	110.8 [57.1]	111.0 [53.1]	
			47.7	49.7	55.8	58.0	144.8 [9.8]	145.8 [9.8]	
L.¢⁵	159.6 [45.8]	164.2 [50.2]	61.2 [51.2]	62.7 [n.o.]	74.3 [38.4]	74.7 [28.3]	108.5 [51.2]	108.5 [50.2]	
			45.9 [n.o.]	46.0 [n.o.]	58.0 [14.7]	58.8	144.8 [9.8]	145.8 [9.8]	
δ ¹¹⁹ Sn	-36.9	-12.4	-35.2	-30.3	-18.1	-9.1	-8.2	+0.9	-40.5
δ ¹¹ Β	+3.7	+5.6	+6.1	+9.2	+25.5	+47±1	+0.5	+0.5	+13.3

[a] Ca. 20% in C_7D_8 (5e), in CDCl₃ (5b, 6b, 5d), in C_6D_6 (5a, 5c, 6c). — [b] $^nJ(^{119}Sn,^{13}C)$ in Hz are given in []; [br] denotes broad ^{13}C resonances of boron-bound carbon atoms; [n.o.] = not observed; $\delta^{11}B$ values±0.5, if not noted otherwise. — [c] Other $\delta^{13}C$ values: 149.6, 140.6, 138.3, 136.3, 121.7, 120.9, 120.2, 117.3. — [d] $\delta^{15}N$ in CDCl₃: —58.5, —130.9. — [c] Other $\delta^{13}C$ values: 148.5, 141.4, 138.1, 135.1, 122.2, 120.2, 119.1, 116.6 (CH,Py). Other signals were not assigned owing to overlap with signals from 10a. — [f] $\delta^{13}C$ values at 183K (in CD₂Cl₂): —8.9 [337.3] (Me₂Sn), 132.2 [401.6] (C-2), 170.9 [31.6, br] (C-3), 151.0 [77.9] (C-4), 139.6 [506.3] (C-5), 13.9 [br] 10.0 (BEt₂), 24.4 [53.4] 13.6 (Et), 86.7 [124.3], 55.7 (C²-CH₂OMe), 73.2 [38.1], 57.6 (C⁵-CH₂OMe). — [g] The assignment of the signals to 5d and 5d′ can be reversed. Other signals were not assigned owing to overlap with signals from 9e.

of nuclear shielding of the alkynyl carbon atoms is inverted as compared to that observed for the triorganotin cations of type C [C: δ^{13} C(B-C=) = 106.1; δ^{13} C(=C-) = 123.3]. This points towards a rather different bonding situation. Nevertheless, π coordination is retained to some extent because long-range coupling constants $|J(^{119}Sn \equiv ^{13}C - UL)|$ (23 to 55 Hz) can be measured. In the absence of π coordination, this would be a coupling across six bonds which is not likely to be detected. The structures J and K describe the extremes of the bonding situation in 3 or 4. The relative contribution of these structures should be reflected by the magnetic shielding of the carbon atom which carries the formal positive charge, similar to vinyl cations^[5b]. In comparison with C, the shielding of ${}^{13}C(\equiv C-)$ and the deshielding of the ¹³C(B-C≡) nuclei indicate an increasing contribution of the structure K.

The 15 N-NMR spectra of **3a** and **4a** provide additional proof of σ coordination. One 15 N signal is close to that in

Table 5. ¹³C- and ¹¹⁹Sn-NMR data of 1-stanna-4-bora-2,5-cyclohexadienes **9**, **10**^[a,b]

Lب	2-Py 10a ^[c]	CH ₂ NMe ₂	CH _z NMe ₂	CH₂OMe 10c	CH=CHOMe 10d ^[d]	CH₂SEt ge [e]	CH₂SEt 10e ^[f]
Me ₂Sn	-8.5 (337.7]	-7.5 [379.5]	-3.2 [317.0]	-6.2 [379.3]	-8.4 (397.8] -5.5 [425.1]	-6.7 [374.0]	-9.4 (br) -4.0 (br)
C -2,6	144.3 [413.3	159.6 [448.0]	146.4 [435.1]	145.4 [433.8]	135.5 [428.9]	156.2 [463.2]	141.7 [450.1]
C-3,5	171.3 [br]	161.1 [br]	167.7 [br] [31.5]	166.9 [br]	167.6 [br]	162.9 [br] [32.7]	169.5 [br] [36.0]
8Et, BiPr	26.0 [br]	15.6 (br)	25.5 [br]	25.6 [br]	25.2 [br]	17.0 [br]	25.1 [br]
	20.8	8.6	20.8	21.0	20.4	8.5	20.4
Et, iPr	32.4 [60.0]	24.8 [60.6]	31.4 [67.0]	32.6 [64.9]	31.0 [58.3]	23.5 [54.5]	30.4 [62.1]
	23.3	15.3 [9.8]	23.1 [5.9]	23.1 [6.0]	22.8 [n.o.]	15.6 [br]	22.7 (br)
							23.5 (br)
Lب	163.0 [32.5]	62.5 [32.3]	62.8 [27.6]	75.1 [39.2]	108.7 [34.3]	34.5 [48.0]	35.0 [41.4]
		45.8	45.6	57.8	144.9 [15.8]	23,7	24.2
δ ¹¹⁹ Sn	-117.3	-143.5	-122.8	-118.2	-120.7	-137.3	-121.5

^[a] Ca. 20% in C₇D₈ (**9e**), in CDCl₃ (**9b**, **10e**), in C₆D₆ (**10c**); all ¹¹B-NMR signals are extremely broad: δ^{11} B $\approx +70\pm2.$ – ^{[b] n J(¹¹⁹Sn¹³C) in Hz are given in []; [br] denotes broad ¹³C resonances of boron-bound carbon atoms; (br) denotes broad ¹³C resonance signals due to dynamic effects. – ^[c] Other δ^{13} C values: 148.7, 135.4, 121.6, 119.3 (CH, Py). – ^[d] Other δ^{13} C values: 59.2 (OMe); ¹³C NMR (SnMe₂) at 238K. – ^[e] Other signals were not assigned owing to overlap with signals from **6e**. – ^[f] Other δ^{13} C values: 14.1 (SCH₂CH₃).}

Table 6. Comparison between coupling constants $^1J(^{119}\mathrm{Sn}^{13}\mathrm{C})$ and chemical shifts $\delta^{119}\mathrm{Sn}$ for some di-1-alkynyltin compounds with and without functional substituents at the C=C bond

	1a	Me ₂ Sn(C≡CPh) ₂	1b	1c	1e	Me ₂ Sn(C=CEt) ₂
¹J(¹¹⁹ Sn ¹³ C∍)	573.3	602.7	612.9	592.9	609.3	640.9
¹ J(¹¹⁹ Sn ¹³ C _{Me})	500.3	497.0	499.2	501.4	499.7	497.0
δ ¹¹⁹ Sn	-145.5	-147.6	-156.8	-152.5	-153.5	-156.7

1a and the second one is shifted to lower frequencies, in accord with $\delta^{15}N$ of pyridine derivatives where the lone pair of electrons at the nitrogen atom is engaged in coordinative bonding^[19]. There are also two ¹⁵N-NMR signals each for 3b and 4b, but the $\delta^{15}N$ values of this type of nitrogen atom are not characteristic for coordinative bonds^[19b]. The $\delta^{119}Sn$ data of 3 and 4 are found in the range between +70 to +210 with higher ¹¹⁹Sn nuclear shielding in the com-

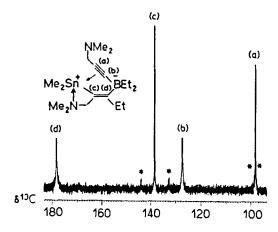


Figure 2. 75.5 MHz ¹³C{¹H}-NMR spectrum (-30°C in CDCl₃) of the zwitterionic intermediate **3b**, showing the range of olefinic and alkynyl carbon atoms. ^{117/119}Sn satellites are marked by asterisks

pounds 4 [Δ^{119} Sn: -43 (4a), -19 (4b), -32 (4c), -27 (4d), -32 (4e)]. Our understanding of ¹¹⁹Sn nuclear shielding of such compounds is still rather limited, although the rather large range can be qualitatively interpreted as a function of greatly varying σ and π interactions between tin and the respective ligands. The increase in ¹¹⁹Sn nuclear shielding in 4 as compared to 3 is similar to the situation observed for the compounds of type C. However, in the case of C the temperature dependence of the $\delta^{119}Sn$ data^[6] indicated a significant contribution of the equilibrium shown in Scheme 1(b), whereas there is no appreciable change in the δ^{119} Sn data of the compounds 3 and 4 between -65 and +10°C. Therefore, the equilibrium in Scheme 1(b) plays a minor role, in agreement with the experimental evidence. Compounds of type 7 snd 8 were observed and identified by their ¹¹⁹Sn-NMR signals in reaction mixtures as minor products only in the case of 7b (δ^{229} Sn = -87.1), 7e $(\delta^{119}\text{Sn} = -86.4)$, and 8e $(\delta^{119}\text{Sn} = +67.8)$.

Stannoles (5, 6): The structure of the stannoles 5 and 6 is proposed because of the typical pattern of olefinic 13 C resonance signals $^{[6,20]}$ with three sharp signals of which two show $^{117/119}$ Sn satellites according to $^{1}J(^{117/119}\text{Sn}^{13}\text{C})$ and one broad signal owing to partially relaxed scalar $^{13}\text{C}^{-11}\text{B}$ coupling. Furthermore, the assignments are supported by the results of 2D $^{13}\text{C}/^{14}\text{H}$ heteronuclear shift correlations based both on $^{1}J(^{13}\text{C}^{14}\text{H})$ and long-range coupling constants $^{n}J(^{13}\text{C}^{14}\text{H})$. In the case of 5c, the carbon-carbon connectivity has also been established by the determination of $^{1}J(^{13}\text{C}^{13}\text{C})$ coupling constants (INADEQUATE).

$$\begin{array}{c} \text{Me} & \text{Me} \\ \text{H}_2\text{C} & \text{CH}_2\text{-OCH}_3 \\ \text{CH}_3\text{-O} & \text{49.8} & \text{41.0} \\ \text{(CH}_3\text{-CH}_2)_2 & \text{33.2} \\ \end{array}$$

Coupling constants ${}^{1}J({}^{13}C^{13}C)$ in Hz

338

The presence of the functional groups L_{\cup} leads to the question for coordinative L-B and L-Sn bonds in the stannoles. The δ¹¹B values are in accord^[17] with coordinative N-B, O-B, and S-B bonds in the compounds 5 and 6, although the O-B bond in 5c ($\delta^{11}B = +25.5$), and particularly in 6c ($\delta^{11}B = +47$), appears to be weak. ¹⁵N-NMR spectra of 5a show two ¹⁵N resonance signals, one at low frequency ($\delta^{15}N = -130.9$), typical of the nitrogen atom engaged in the coordinative N-B bond^[19], the other one at high frequency ($\delta^{15}N = -58.6$). This $\delta^{15}N$ value does not indicate a significant N-Sn interaction. The ¹³C-3 resonance signals of the stannoles 5 and 6 are all shifted to higher frequencies as compared to stannoles F without functional groups in 2,5-positions. However, the deshielding of ¹³C-3 nuclei in **5a** and **6a** is rather extreme ($\Delta \approx 47$ with respect to the 2,5-diphenyl derivative^[6]). This is readily explained by taking into account the second important canonical zwitterionic structure L2 in which the carbocationic character of C-3 becomes apparent.

$$\begin{array}{c}
Me \\
N \\
R^2
\end{array}$$

$$\begin{array}{c}
Me \\
\overline{B} \\
R^2
\end{array}$$

$$\begin{array}{c}
Me \\
\overline{B} \\
R^2
\end{array}$$

$$\begin{array}{c}
R^2 \\
\overline{B} \\
R^2
\end{array}$$

$$\begin{array}{c}
R^2 \\
\overline{B} \\
R^2
\end{array}$$

The comparison of the δ^{119} Sn data for 5 and 6 with those of other stannoles^[6] is not straightforward because of the tetracoordinate boron atoms. However, the marked shift to lower frequency for most 119Sn resonance signals in 5 and **6** [e.g. compare δ^{119} Sn of **5a** (-36.9) with the 2,5-diphenyl derivative $(+14.6^{[6]})$ or that of **5b** (-35.3) with the 2,5-dipropyl derivative $(-3.5^{[6]})$] points towards weak coordinative L−Sn interactions arising from the L_∪ group in 5-position. There is a significant influence of the ring size on δ¹¹⁹Sn^[18]. If the coordinative L-Sn bond involves a fivemembered ring like in 5d, the expected increase in ¹¹⁹Sn nuclear shielding may be compensated by the deshielding influence of the five-membered ring. The most reliable proof for the increase in the mean coordination number of the tin atom should be revealed by the relative magnitude of the coupling constants $|{}^{1}J({}^{119}\mathrm{Sn}{}^{13}\mathrm{C})|$. The values 1¹J(¹¹⁹Sn¹³C_{Me})| in 5 and 6 are always larger than in stannoles F without functional groups in 2,5-positions^[6]. The difference in the magnitude of the coupling constants $| {}^{1}J({}^{119}\text{SnC}^{2}) |$ and $| {}^{1}J({}^{119}\text{SnC}^{5}) |$ in 5 and 6 is much larger than in stannoles of type F. Although a small part of this difference can be traced to the influence of the tetracoordinate boron atom, the large increase of the values $|^{1}J(^{119}\mathrm{Sn^{13}C^{5}})|$ must be related to an increase in the mean coordination number of the tin atom, as shown in M where the C-5 atom adopts one of the equatorial positions of a trigonal bipyramid whereas one of the axial positions is taken by the C-2 atom of the stannol ring. Similar to $|^{1}J(^{119}Sn^{13}C)|$ values in $[SnMe_{5}]^{-[21]}$ and in some other hypervalent tin compounds with four organic substituents^[22],

this model explains the increase and decrease in the magnitude of $|{}^{1}J({}^{119}\mathrm{Sn}{}^{13}\mathrm{C}^{5})|$ and $|{}^{1}J({}^{119}\mathrm{Sn}{}^{13}\mathrm{C}^{2})|$, respectively.

X-Ray Analyses of 3b, 4b, and 4d

Experimental data for the X-ray analyses are given in Table 7^[23]. The structure determination of **4d** was carried out at room temperature because the crystal was destroyed below 220 K, probably because of a phase transition. An analogous behaviour was observed in the case of **3b** in an attempt to measure responses at temperatures below 200 K. Table 8 contains selected bond distances and bond angles together with those of C for comparison. The molecular structures of **3b** and **4b** are depicted in Figure 3, and Figure 4 shows the molecular structure of **4d**.

Table 7. Data for the X-ray analyses of compounds 3b, 4b, and 4d

	3b	4b	4d
Crystal size [mm³]	0.24x0.23x0.07	0.28 x 0.26 x 0.26	0.18x0.20x0.50
Space group; Z	P2 ₁ /c; 4	P2 ₁ /n; 4	P2 ₁ /c; 4
a, b, [Å] c [Å]	16.043(5), 9.460(4) 15.552(5)	8.629(2), 20.968 (4) 14.042(3)	9.746(2), 15.130(3) 16.005(3)
ß [°]	113.99(2)	104.97(3)	94.97(3)
Valume [ų]	2157 (1)	2454.4(9)	2351.3 (8)
Density (calcd.)[Mg/m³]	1.263	1.226	1.274
Absorption coeff. [mm ⁻¹]	1.18	1.047	1.097
Diffractometer	Nicolet R3m/v	Siemens P4	Siemens P4
Radiation	MoK _α (λ = 0.71	073 Å); graphite	monochromator
Temperature [K]	200	201	296
2 ⊝ range [º]	3-50	2-55	2-50
Scan type	Wyckoff	ω	w
Independent reflections	3380	5571 (R _{int} = 2.44%)	4138 (R _{int} = 2.17%)
Observed reflections	2768 (F > 4.06(F))	4915 (F > 2.0o(F))	4138 (F > 0.0 ₀ (F))
Solution	Direct methods	Direct methods	Direct methods
Weighting scheme	$w^{-1} = o^2(F)$	$w^{-1} = \sigma^2(F)$	$w^{-1} = \sigma^2(F)$
Parameters refined	210	227	227
R indices (all data)	4.04 %, R _w = 4.47%	3.09 %, R _w = 3.55 %	4.87%, R _W = 2.69%
Largest diff. peak [e/ų]	0.44	0.46	0.39
Largest diff. hole [e/ų]	-0.70	-0.48	-0.82

In the light of the NMR spectroscopic differences between the B-ethyl (3) and B-isopropyl derivatives (4) in solution (e.g., see δ^{119} Sn values in the Tables 2 and 3) and of the structural differences between 3b and 4d (vide infra) it was necessary to determine the molecular structure of 4b. The strong similarity of the molecular structures of 3b and 4b proves that differences in some NMR data of 3 and 4 are induced by the properties of the compounds in solution, and that structural differences between 3b and 4b (vide infra) in the solid state are not caused by the different influence of isopropyl and ethyl groups. The common feature of all three molecular structures is the plane formed by the atoms N or O (in L_U), Sn, C1, C2, B, C3, and C4. This is shown for compound 4d in Figure 5 where, because of the nature of L_U, even more atoms lie in one plane. This planar arrangement strongly supports the side-on π coordination

Table 8. Selected bond distances [Å] and bond angles [⁰]^[a]

	С	Зь	4b	4d
Sn-C1	2.116(4)	2.104(5)	2.114(3)	2.127(3)
Sn-C3	2.339(4)	2.626(6)	2.554(2)	2.373(3)
Sn-C4	2.523(5)	2.604(5)	2.589(3)	2.661(3)
Sn-C8	2.128(5)	2.142(8)	2.132(3)	2.113(5)
Sn-C9	2.136(5)	2.134(7)	2.135(3)	2.111(5)
B-C2	1.616(6)	1.629(8)	1.638(4)	1.643(4)
B-C3	1.651(6)	1.627(7)	1.630(4)	1.650(5)
C1-C2	1.334(6)	1.342(8)	1.334(4)	1.353(4)
C1-C10	1.529(6)	1.512(8)	1.523(4)	1.462(4)
C3-C4	1.213(6)	1.220(7)	1.212(4)	1.221(5)
C4-C5	1.483(7)	1.500(7)	1.492(5)	1.432(6)
Sn-L		2.521(4)	2.481(3)	2.592(2)
C1-Sn-C3	84.2(2)	75.3(2)	76.5(1)	82.9(1)
C1-Sn-C4	112.6(2)	102.1(2)	103.4(1)	110.2(1)
C3-Sn-C4	28.6(1)	27.0(2)	27.3(1)	27.3(1)
C1-Sn-C8	118.1(2)	124.2(2)	119.8(1)	122.7(2)
C1-Sn-C9	119.1(2)	122.0(3)	125.2(1)	119.0(2)
C8-Sn-C9	113.9(2)	111.8(3)	112.5(1)	113.6(2)
C2-B-C3	110.1(3)	109.1(5)	109.3(2)	109.8(2)
Sn-C1-C2	114.5(3)	125.4(4)	124.4(2)	116.5(2)
B-C2-C1	125.2(4)	122.8(4)	121.7(2)	123.8(3)
Sn-C3-B	105.5(2)	106.7(3)	107.0(2)	106.9(2)
B-C3-C4	170.1(4)	177.8(6)	174.9(2)	163.5(3)
C3-C4-C5	174.0(5)	171.0(6)	169.6(3)	179.2(4)
C3-Sn-C8	107.3(2)	100.7(2)	106.9(1)	104.6(1)
C4-Sn-C8	95.7(2)	88.4(2)	90.1(1)	90.3(1)
C3-Sn-C9	108.6(2)	110.0(2)	103.9(1)	105.0(2)
C4-Sn-C9	90.9(2)	93.0(2)	91.5(1)	90.3(2)
L-Sn-C1		61.8(2)	62.1(1)	74.0(1)
L-Sn-C3		136.6	138.4(1)	156.9(1)
L -Sn-C4		163.6	165.6(1)	175.7(1)
L -Sn-C8		98.3(2)	98.0(1)	86.7(1)
L-Sn-C9		98.3(2)	96.3(1)	88.2(2)

[a] L = N (3b, 4b) or O (4d) in $L_U C = ...$

between the C≡C bond and the tin atom, in spite of the fairly long Sn-C≡ distances. One of the major differences between the molecular structures of 3b, 4b, d, and C concerns the distance between the tin atom and the alkynyl carbon atoms C3 and C4 (Table 8). The shortest distances $d_{\text{Sn-C3}}$ and $d_{\text{Sn-C4}}$ are observed in the case of C, the distance to C3 being much shorter than to C4. In compound 4d, both distances become slightly longer than in C, and the nature of bonding seems to be different if one compares the bond angle B-C3-C4 which deviates significantly from 180° in 4d [163.5(3)°], much more than in C [170.1(4)] or in **3b** [177.8(6)°] and **4b** [174.9(2)°]. In **3b** and **4b**, the distances between the tin atom and the alkynyl carbon atoms C3 and C4 are almost equal, and the distance to C3 is significantly longer than in 4d or in C. The competition between the L-Sn σ bond and π coordination is also evident from the arrangement of the other ligands around the tin atom. The sum of bond angles (not including the C≡C bond) at the tin atom in C (351.1°) shows that a pyramidal geometry is adopted, the tin atom being oriented towards the C≡C

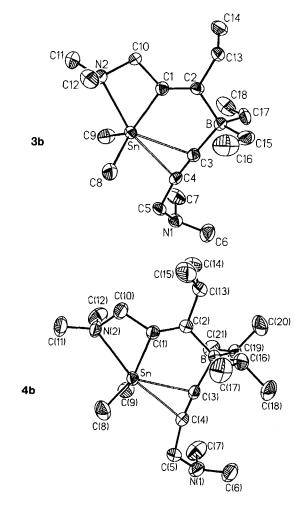


Figure 3. Molecular structures of compound 3b and 4b

Figure 4. Molecular structure of compound 4d

bond. In the case of 4d, the surrounding of the tin atom can be described as a distorted trigonal bipyramid where the tin atom is shifted out of the equatorial plane in the direction of the C≡C bond. In contrast, in 3b and 4b the

trigonal bipyramidal surrounding of the tin atoms is distorted by a shift of the tin atom away from the C=C bond towards the nitrogen atom in L_{\cup} . Similar to the anion [BEt₄]⁻, the relevant bond angles in **3b** [BC15C16 116.2(7) and BC17C18 = 117.1(5)°] are fairly large^[24].

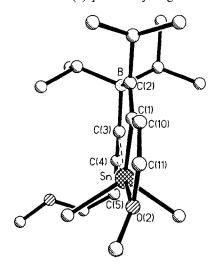


Figure 5. Side view of the molecular structure of 4d showing the planar arrangement of the bicyclic system (mean deviation from best plane 3.4 pm)

We gratefully acknowledge support of this work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie*. We also thank Prof. Dr. R. Köster (Mülheim a.d. Ruhr) for a generous gift of triethylborane.

Experimental

All compounds were handled under N2 by using carefully dried glassware and solvents. Deuterated solvents were stored over molecular sieves and saturated with N2. Starting materials such as solutions of butyllithium (1.6 M) in hexane (Aldrich) and most terminal alkynes were commercial products. Me₂SnCl₂ was prepared from Me₄Sn and SnCl₄ and purified by recrystallization from hexane. - Elemental analyses: Pascher, Remagen. - IR: Perkin-Elmer 983. - MS: EI-MS (70 eV), Varian MAT CH-7 with direct inlet. - 1H/13C NMR: Bruker AC 300 (300.13/75.5 MHz), Bruker AM 500 (500.13/125.8 MHz), Jeol JNM-EX 270E (270.67/67.94 MHz). - 11B NMR: Bruker AC 300 (96.3 MHz) and Jeol FX 90Q (28.7 MHz), Et₂O · BF₃ as external standard Ξ (¹¹B) = 32.083971 MHz]. - 119Sn NMR: Bruker AC 300 (111.8 MHz) and Jeol FX 90Q (33.3 MHz), SnMe₄ as external standard $[\Xi(^{119}Sn) = 37.290665 \text{ MHz}]$. – ¹⁵N NMR: Bruker AC 300 (30.4 MHz) and Bruker AM 500 (50.7 MHz), neat CH₃NO₂ as external standard Ξ (15N) = 10.136767

Starting materials: Ethyl propargyl thioether^[25], triethylborane^[26], and triisopropylborane (**2b**)^[27] were prepared according to literature procedures.

Dialkynylstannanes (1). — General Procedure: A freshly prepared suspension of 85 mmol of the respective lithiated alkyne in 100 ml of toluene is stirred at -78° C before 8.3 g (38 mmol) of Me₂SnCl₂ is added in one portion. The mixture is warmed to room temp., stirred for 12 h, and filtered. After removal of the solvent in vacuo (0.1 Torr), the residues are purified either by fractional distillation, sublimation, or recrystallization to give pure products in 46-78% yield (see Table 1 for 119 Sn-, 15 N-, and 13 C-NMR data).

1a: Yield 6.2 g (46%); decomp. at 97° C. – IR (CHCl₃): $\tilde{v} = 2253$ cm⁻¹ [v(C=C)]. – ¹H NMR (CDCl₃): δ [n J(¹¹⁹Sn, ¹H)] = 0.55 [68.7 Hz] [s, 6H, Sn(CH₃)₂]; 7.35 (m, 2H), 7.51 (m, 2H), 7.10 (m, 2H), 8.44 (m, 2H). – MS, m/z (%): 354 (10) [M⁺], 339 (100), 324 (5), 222 (7), 120 (1).

1b: Yield 8.6 g (72%); m.p. 29–31°C. – IR (CHCl₃): $\tilde{v} = 2154$, 2162 cm⁻¹ [$v(C \equiv C)$]. – ¹H NMR (CDCl₃): δ [$^nJ(^{119}Sn, ^1H)$] = 0.39 [69.1 Hz] [s, 6H, Sn(CH₃)₂]; 3.17 [10.7] (s, 4H, CH₂); 2.20 [s, 12H, N(CH₃)₂]. – MS, m/z (%): 232 (100) [M⁺ – C \equiv CCH₂NMe₂], 120 (7), 82 (100), 58 (52).

1c: Yield 6.8 g (62%); b.p. 69°C/0.2 Torr. – IR (CHCl₃): $\bar{\nu}$ = 2157, 2250 cm⁻¹ [ν (C=C)]. – ¹H NMR (CDCl₃): δ [n J(¹¹⁹Sn, ¹H)] = 0.23 [69.8 Hz] [s, 6H, Sn(CH₃)₂]; 3.83 [10.7] (s, 4H, CH₂); 3.10 (s, 6H, OCH₃). – MS, m/z (%): 273 (100) [M⁺ – 15], 189 (44), 135 (45), 120 (26), 69 (53). – C₁₀H₁₆O₂Sn [286.9]: calcd. C 41.86, H 5.62; found C 41.72, H 5.66.

1d: Yield 7.9 g (67%); m.p. 83–86°C. – IR (CHCl₃): \tilde{v} = 2127, 2243 cm⁻¹ [v(C=C)]. – ¹H NMR (CDCl₃): $\delta^n J(^{119}\mathrm{Sn},^{1}\mathrm{H})] = 0.24$ [69.1 Hz] [s, 6H, Sn(CH₃)₂]; 4.31 (d, 2H, CH=); 6.09 (d, 2H, =CH-O); 3.55 (s, 6H, OCH₃). – MS, m/z (%): 297 (100) [M⁺ – 15], 201 (8), 135 (9), 120 (5). – C₁₂H₁₆O₂Sn [311.0]: calcd. C 46.35, H 5.62; found C 46.17, H 5.34.

1e^[28]: Yield 10.3 g (78%); b.p. 123°C/0.2 Torr. – IR (CHCl₃): $\tilde{v} = 2154 \text{ cm}^{-1} [v(C = C)]. - {}^{1}\text{H NMR (CDCl}_{3}): \delta[{}^{n}J({}^{119}\text{Sn}, {}^{1}\text{H})] = 0.26 [69.1 \text{ Hz}] [s, 6\text{H, Sn(CH}_{3})_{2}]; 3.11 [11.5] (s, 4\text{H, } = \text{CCH}_{2}); 2.49 (q, 4\text{H, } CH_{2}\text{CH}_{3}), 1.08 (t, 6\text{H, } CH_{2}\text{CH}_{3}). – MS, <math>m/z$ (%): 348 (8) [M⁺], 333 (26), 249 (70), 135 (45), 120 (18), 99 (199), 71 (73), 29 (45).

Stannoles 5, 6 and 1-Stanna-4-bora-2,5-cyclohexadienes 9, 10. — General Procedure: A solution of 4 mmol of 1b-e in 8 ml of CH_2Cl_2 (1c, d) or toluene (1a, b, e) is cooled to $-78^{\circ}C$, then 4 mmol of 2 is added in one portion; the mixture is warmed to room temp. and stirred ($1a+2a:5h/65^{\circ}C$; $1a+2b:14h/60^{\circ}C$; $1b+2a:5h/60^{\circ}C$; $1b+2b:12h/60^{\circ}C$; $1c+2a:12h/25^{\circ}C$; $1c+2b:2d/25^{\circ}C$; $1d+2a:14d/25^{\circ}C$, $1d+2b:90d/25^{\circ}C$; $1e+2a:2d/25^{\circ}C$; $1e+2b:3d/25^{\circ}C$). After removal of volatile materials in vacuo the compounds 5, 6, 9, and 10 are obtained in quantitative yield as oily yellow liquids or solids (5a) (see Tables 4 and 5 for $^{119}Sn-$, $^{15}N-$, $^{11}B-$, and $^{13}C-NMR$ data).

5a: ¹H NMR (CDCl₃): δ [nJ (¹¹⁹Sn, ¹H)] = 0.51 [59.7 Hz] [s, 6 H, Sn(CH₃)₂]; 0.77 (m), 0.34 (t) (10H, BEt₂); 2.97 (q), 1.26 (t) (5 H, Et); 6.91 (m), 7.11 (m), 7.19 (m), 7.27 (m), 7.60 (m), 8.01 (m), 8.48 (m) (8 H, Py). – MS, m/z (%): 423 (2) [M⁺ – 29], 393 (5), 366 (5), 264 (26), 236 (31), 185 (45), 174 (45), 158 (100), 144 (84), 130 (48), 117 (53), 93 (50), 78 (39); 57 (43), 43 (31). – C₂₂H₂₉BN₂Sn (451.0): calcd. C 58.59, H 6.48, N 6.21; found C 55.54, H 5.45, N 5.43.

5c: ¹H NMR (CDCl₃): δ [ⁿJ(¹¹⁹Sn, ¹H)] = 0.23 [57.0 Hz] [6H, Sn(CH₃)₂]; 0.40 (m), 0.58 (m) (10H, BEt₂); 2.11 (q), 0.87 (t) (5 H, Et); 4.57 (s), 3.43 (s) (5 H, 2-CH₂OMe); 4.18 [41.8] (s), 3.23 (s) (5 H, 5-CH₂OMe). – MS, m/z (%): 357 (100) [M⁺ – 29], 325 (32), 255 (92), 207 (60), 151 (68), 135 (25), 105 (18). – C₁₆H₃₁BO₂Sn [385.0]: calcd. C 49.93, H 8.12; found C 50.42, H 8.21.

5b/9b (mixture): $C_{18}H_{37}BN_2Sn$ (411.1): calcd. C 52.60, H 9.07; found C 51.65, H 8.93.

10d: ¹H NMR (CDCl₃ at -35° C): $\delta[^{n}J^{(119}Sn, ^{1}H)] = 0.24$ [64.8 Hz], -0.06 [55.2] [s, 6H, Sn(CH₃)₂]; 1.78 (m), 0.96 (d) (7H, B*i*Pr); 2.89 (m), 1.18 (d) (14H, *i*Pr); 5.67 [84.5] (d), 5.84 (d), 3.56 (s) (5H, CH=CHOMe).

10e: ¹H NMR (CDCl₃): δ [ⁿJ(¹¹⁹Sn, ¹H)] = 0.16 [58.5 Hz] [s, 6 H, Sn(CH₃)₂]; 2.44 (m), 2.45 (m), 0.89 (d) (7 H, BiPr); 2.76 (m), 1.04,

1.05 (br) (14H, *i*Pr); 3.93 (br), 3.47 (br), 3.00 (br), 2.30 (q), 1.13 (t) (7H, CH₂SEt). - MS, m/z (%): 445 [M⁺ - 43] (31), 215 (39), 211 (100), 174 (86), 151 (31), 131 (45), 93 (15), 43 (17), 41 (31). C₂₁H₄₁BS₂Sn (487.2): calcd. C 51.77, H 8.48; found C 51.48, H 8.32.

Mixtures of compounds are obtained for 5b/9b (≈1:1), 5d/5d' (≈1:1.3), 5e/9e (≈1:1, with 7e and 8e as minor components), 6a/10a (\approx 1.5:1), 6b/10b (\approx 1:2), and 6c/10c (\approx 1:2).

 $(\eta^2$ -Alkyne) tin Compounds 3, 4. – General Procedure: A solution of 10 mmol of 1 in 6 ml of CHCl₃ (3c, 3d, 3e, 4b, 4c, 4d, 4e) or CH_2Cl_2 (3a, 3b, 4a) is cooled to -78 °C, then 10 mmol of 2a or 2b is added in one portion. The following solutions were warmed to room temp.: 1d+2a (30 min), 1a+2b (2 d), 1b+2b (6 h), 1d+2b(4 d). The solvents are removed in vacuo at 20°C. The successful preparation of the other compounds depends critically on the reaction conditions in Table 9 which were optimized by using NMR spectroscopy for monitoring of the progress of the reaction.

Table 9. Reaction conditions for preparing some (η²-alkyne)tin compounds 3 and 4

_	Conditions						
Com- pound	solvent	first warming up to [°C]	cooling down to [⁰ C]	removal of solvent [OC]			
3а	CH ₂ Cl ₂	+20/5min	-35/3h	0			
ЗЬ	CH ₂ Cl ₂	+25/20min	0/1h	0			
Зс	CHCl₃	-35/1d	_	-30			
Зе	CHCl3	25/1min	-35/2d	-30			
4c	CHCI3	25/3min	-35/14d	0			
4e	CHCl₃	25/3min	-35/14d	0			

Compounds 3b, 4b, and 4d were recrystallized from pentane (3b) and CH₂Cl₂ (4b, 4d). All compounds were obtained in quantitative yield and must be stored at -35°C (see Tables 2 and 3 for ¹¹⁹Sn-, ¹⁵N-, ¹¹B-, and ¹¹⁹Sn-NMR data).

3a: ¹H NMR (CDCl₃/25°C): $\delta[^{n}J(^{119}Sn, ^{1}H)] = 0.82 [60.4 Hz] [s,$ 6H, $Sn(CH_3)_2$; 0.51 (q), 0.89 (t) (10H, BEt₂); 2.54 (q), 1.15 (t) (5H, =CEt); 6.97 (m), 7.15 (m), 7.40 (m), 7.48 (m), 7.58 (m), 8.11 (m) (8H, Py).

3b: ¹H NMR (CDCl₃/ -30° C): $\delta[^{n}J(^{119}Sn,^{1}H)] = 0.44$ [51.3 Hz] [s, 6H, Sn(CH₃)₂]; 0.51 (dq), 0.86 (t) (10H, BEt₂); 2.01 (q, br), 0.96 (t) (5H, =CEt); 3.08 [80.2] (s), 1.94 (s) $(8H, =CCH_2NMe_2)$; 3.08 (s), 2.07 (s) $(8 \text{ H}, \equiv \text{CCH}_2 \text{NMe}_2)$.

3c: ¹H NMR (CDCl₃/ -30° C): δ [ⁿJ(¹¹⁹Sn, ¹H)] = 0.55 [53.4 Hz] [s, 6H, Sn(CH₃)₂]; 0.19 (q, br), 0.67 (t) (10H, BEt₂); 1.84 (q, br), 0.86 (t) (5 H, =CEt); 4.30 [47.8] (s), 3.62 (s) (5 H, =CC H_2OMe); 4.17 (s), 3.28 (s) (5 H, \equiv CCH₂OMe).

3d: ¹H NMR (CDCl₃/-30°C): δ [ⁿJ(¹¹⁹Sn, ¹H)] = 0.58 [58.1 Hz] [s, 6H, Sn(CH₃)₂]; 0.22 (q, br), 0.69 (t) (10H, BEt₂); 2.07 (q, br), 0.88 (t) (5H, =CEt); 5.88 [183.4] (d), 5.78 (d), 3.60 (s) (5H, =CCH=CHOMe); 6.49 (d), 4.46 (d), 3.75 (s) **=CCH=CHOMe**).

3e: ¹H NMR (CDCl₃/ -30° C): δ ["J(¹¹⁹Sn, ¹H)] = 0.72 [52.1] [s, 6H, Sn(CH₃)₂]; 0.16 (q, br), 0.64 (t, br) (10H, BEt₂); 1.84 (q, br), 0.81 (t) (5H, =CEt); 3.44 [83.2] (s), 2.45 (q), 1.16 (t) (7H, =CCH₂SEt); 3.29 (s), 2.59 (q), 1.16 (t) (7H, \equiv CCH₂SEt).

4a: ¹H NMR (CDCl₃/25°C): δ [ⁿJ(¹¹⁹Sn, ¹H)] = 0.61 [46.2] [s, 6H, $Sn(CH_3)_2$; 0.83 (d) [12H, $B(CH(CH_3)_2)_2$]; BCH was not observed because of overlap with other signals; 3.16 (m), 1.18 (t) (7H, iPr); 7.0 (m), 7.16 (m), 7.42 (m), 7.58 (m), 7.74 (m), 8.08 (m), 8.52 (m) (8H, Py).

4b: ¹H NMR (CDCl₃/25°C): $\delta[^n J(^{119}Sn,^{1}H)] = 0.57$ [51.4 Hz] [s, 6H, Sn(CH₃)₂]; 0.80 (m), 0.79 (d), 0.84 (d) (14H, BiPr₂); 2.53 (m), 0.96 (d) (7 H, =CiPr); 3.49 [87.9] (s), 2.23 (s) $(8 \text{ H}, =\text{CCH}_2\text{NMe}_2)$; 3.26 (s), 2.37 (s) $(8H, \equiv CCH_2NMe_2)$.

4c: ¹H NMR (CDCl₃/25°C): $\delta[^n J(^{119}Sn, ^1H)] = 0.64 [54.1 Hz] [s,$ 6H, Sn(CH₃)₂]; 0.78 (m, br), 0.78 (d) (14H, BiPr₂); 2.53 (m), 0.96 (d) (7 H, =CiPr); 4.45 [54.6] (s), 3.40 (s) $(5 \text{ H}, =\text{CCH}_2\text{OMe})$; 4.15 (s), 3.31 (s) (5H, \equiv CCH₂OMe).

4d: ¹H NMR (CDCl₃/25°C): $\delta[^n J(^{119}Sn, ^1H)] = 0.58$ [55.3 Hz] [s, 6H, Sn(CH₃)₂]; 0.84 (m), 0.83 (d) (14H, BiPr₂); 2.76 (m), 1.17 (d) (7H, =CiPr); 6.17 [208.7] (d), 5.71 [12.8] (d), 3.60 (s) (5H,=CCH=CHOMe); 6.45 (s), 4.50 (s), 3.78 (s) (5H, ≡CCH=CHOMe).

4e: ¹H NMR (CDCl₃/25°C): $\delta[^n J(^{119}Sn, ^1H)] = 0.74$ [52.1 Hz] [s, 6H, $Sn(CH_3)_2$]; 0.80 (d) [12H, $B(CH(CH_3)_2)_2$]; BCH was not assigned because of overlap with other signals; 2.52 (m), 1.23 (d) (7 H, =CiPr); 3.69 [90.1] (s), 2.57 (q), 1.22 (t) (7H, =CCH₂SEt); 3.32 (s), 2.67 (q), 1.24 (t) (7 H, \equiv CCH₂SEt).

[1] [1a] R. J. P. Corriu, M. Henner, J. Organomet. Chem. 1974, 74, 1–28. – [1b] J. B. Lambert, W. J. Schulz, Jr., J. A. McConnell, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. J. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 2201–2210. – [1c] J. B. Lambert, W. Schilf, M. Lambert, W. Lambert, W Lambert, W. Schilf, J. Am. Chem. Soc. 1988, 110, 6364-6367. [1c] M. Okano, K. Mochida, Chem. Lett. 1991, 819-822. [1d] G. A. Olah, G. Rasul, L. Heilinger, J. Bausch, G. K. S. Prakash, J. Am. Chem. Soc. 1992, 114, 7737-7742. - [1d] T. Birchall, V. Maniyannan, J. Chem. Soc., Dalton Trans. 1985, 2671–2675. – [1e] J. B. Lambert, B. Kuhlmann, J. Chem. Soc., Chem. Commun. 1992, 931-932

[2] [2a] H. C. Clark, J. O'Brien, Inorg. Chem. 1963, 2, 1010-1012. - [26] V. G. K. Das, W. Kitching, J. Organomet. Chem. 1967, 10, 59-69. - [2c] I. R. Beattie, G. P. McQuillan, J. Chem. Soc. 1963, 1519-1523. - [2d] K. L. Leighton, R. E. Wasylishen, Can. J. Chem. 1987, 65, 1469-1473. - [2c] T. S. B. Baul, D. Dey, D. Chem. 1987, 65, 169-169-169. J. Organomet. Chem. D. Mishra, W. Basaiawmoit, E. Rivarola, J. Organomet. Chem. **1993**, 447, 9-13. - [21] A. Vij, S. Singh, R. D. Verma, J. Fluorine Chem. 1992, 58, 43-51.

[3] [3a] B. Wrackmeyer, Rev. Silicon, Germanium, Tin, Lead Compds. 1982, 6, 75–148. – [3b] B. Wrackmeyer, Boron Chemistry – Proceedings of the 6th International Meeting on Boron Chemistry (IMEBORON VI) (Ed.: S. Hermanek), World Scientific, Singa-

pore, **1987**, p. 387–415.

[4] [4a] J. B. Lambert, *Tetrahedron* **1990**, 46, 2677–2689. – [4b] K. A. Nguyen, M. S. Gordon, G. Wang, J. B. Lambert, Organometallics 1991, 10, 2798–2803. — [4c] G. A. McGibbon, M. A. Brook, J. K. Terlouw, J. Chem. Soc., Chem. Commun. 1992,

[5] [5a] P. J. Stang, Z. Rappoport, M. Hannack, L. R. Subramanian, Vinyl Cations, Academic Press, New York, 1979. – [5b] H.-U. Siehl, F.-P. Kaufmann, Y. Apeloig, V. Braude, D. Danovich, A. Berndt, N. Stamatis, Angew. Chem. 1991, 103, 1546-1549; Angew. Chem. Int. Ed. Engl. 1991, 30, 1479. - [5c] C. Dallaire, M. A. Brook, Organometallics 1993, 12, 2332-2338. - [5d] P. Buzek, P. v. Rague Schleyer, S. Sieber, Chem. Unserer Zeit 1992, 28, 116–128. – [5e] A. Berndt, Angew. Chem. 1993, 105, 1034–1058; Angew. Chem. Int. Ed. Engl. 1993, 32, 985–1009.

[6] B. Wrackmeyer, S. Kundler, R. Boese, Chem. Ber. 1993, 126,

[7] B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem. 1989, 101, 1563–1565; Angew. Chem. Int. Ed. Engl. **1989**, 28, 1500-1501.

[8] B. Wrackmeyer, G. Kehr, R. Boese, Angew. Chem. 1991, 103, 1374–1376; Angew. Chem. Int. Ed. Engl. 1991, 30, 1370–1372.

B. Wrackmeyer, G. Kehr, A. Sebald, J. Kümmerlen, *Chem. Ber.* **1992**, *125*, 1597–1603.

[10] B. Wrackmeyer, K. Horchler, J. Organomet. Chem. 1990, 339,

[11] B. Wrackmeyer, K. Horchler, Z. Naturforsch., Teil B, 1990, 45, 437 - 446

- [12] B. Wrackmeyer, G. Kehr, *Polyhedron* **1991**, *10*, 1497–1506.
- [13] R. Köster, G. Seidel, I. Klopp, C. Krüger, G. Kehr, J. Süß, B. Wrackmeyer, *Chem. Ber.* 1993, 126, 1385–1396.
 [14] B. Wrackmeyer, C. Wagner, S. T. Abu-Orabi, *J. Organomet.*
- Chem. 1988, 346, 333-340.
- [15] B. Wrackmeyer, G. Guldner, S. T. Abu-Orabi, Tetrahedron 1989, 45, 1119-1130.
- [16] B. Wrackmeyer, K. Horchler, Progr. NMR Spectrosc. 1990, 22,
- [17] [17a] H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds in NMR - Basic Principles Spectroscopy of Boron Compounds in NMR — Basic Frinciples and Progress, vol. 14 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer, Berlin, 1978. — [17b] B. Wrackmeyer, R. Köster in Houben-Weyl, Methoden der Organischen Chemie, vol. 13/3c (Ed.: R. Köster), Thieme, Stuttgart, 1984, pp. 377—611. — [17c] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1988, 20, 61—203 61 - 203.
- 61-203.
 [18] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1985, 16, 73-186.
 [19] [19a] G. J. Martin, M. L. Martin, J.-P. Gouesnard, ¹⁵N NMR Spectroscopy in NMR Basic Principles and Progress, vol. 18 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer, Berlin, 1981. [19b] M. Witanowski, L. Stefaniak, G. A. Webb, Annu. Rep. NMR Spectrosc. 1986, 18, 1.
 [20] [20a] L. Killian, B. Wrackmeyer, J. Organomet. Chem. 1978, 148, 137-146. [20b] C. Bihlmayer, S. T. Abu-Orabi, J. Organomet. Chem. 1987, 322, 25-32. [20c] S. Kerschl, B. Wrackmeyer, J.

- Organomet. Chem. 1988, 338, 195-204. [20d] B. Wrackmeyer, J. Organomet. Chem. 1989, 364, 331-342.
- [21] H. J. Reich, N. H. Phillips, J. Am. Chem. Soc. 1986, 108, 2102–2103.
- [22] R. Köster, G. Seidel, B. Wrackmeyer, K. Horchler, D. Schlosser, Angew. Chem. 1989, 101, 945-946; Angew. Chem. Int. Ed. Engl. **1989**, 28, 918-919.
- [23] Further details of the crystal structure analyses are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen (FRG), on quoting the depository number CSD-57792, the names of the authors, and the journal citation.
- R. Boese, D. Bläser, N. Niederprüm, W. A. Brett, P. v. Rague Schleyer, M. Bühl, N. J. R. van Eikema Hommes, *Angew. Chem.*
- **1992**, 104, 356–358; Angew. Chem. Int. **1992**, 31, 314–316. [25] L. Brandsma, Preparative Acetylenic Chemistry, 2nd Ed., Else-
- ²⁶ R. Köster, P. Binger, W. V. Dahlhoff, Synth. Inorg. Met.-Org. Chem. 1973, 3, 359-367.

 ²⁷ E. Krause, P. Nobbe, Ber. Dtsch. Chem. Ges. 1931, 64, 2112-2116.
- [28] G. O. Tsetlina, V. A. Pestunovich, M. G. Voronkov, E. E. Liepin'sh, V. N. Cherkasov, E. T. Bogorodovskii, V. S. Zagorodnii, A. A. Petrov, *Dokl. Akad. Nauk. SSSR* 1979, 245, 400-403.

[271/93]